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Abstract: In this article, we study a class function of a finite group. By computing the

inner product, we prove the class function is a character, and a kind of its module construction is

obtained.
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1 Introduction

In [4], J.G.Thompson considered some interesting generalized characters on a finite
group G. For example, for an element g ∈ G, he defined

χp(g) = |{h ∈ G : the Sylow p− subgroups of < g, h > are abelian}|.

In [4], J.G.Thompson proved that χp is a generalized character of G.
In this note, we consider a class function f defined on a finite group and prove that it

is a character; by the regular representation of the center of the complex group algebra, we
give a kind of module construction of the class function.

2 Definitions and Basic Results

Definition 1 Let G be a finite group, and the finite group G×G be the direct product
of G and G. We define a function f on G by

f(g) = |{(u, v) ∈ G×G : g = [u, v] = u−1v−1uv}|,

here g is any element of the finite group G and for a set S , |S| denotes the cardinality of S.
Lemma 1 f is a class function on G . An element g which is equal to some [u, v], u, v ∈ G

is called a commutator. If g ∈ G is not a commutator, then f(g) = 0.
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Proof The statements are obvious by the definition of f .
In our main theorem of this note, we prove that even f is a character of G.
Now, we fix some notations for this note. Throughout this note, G always denotes a

finite group. By Irr(G) = {χ1 = 1G, · · · , χk}, we denote the set of all nonequivalent complex
irreducible characters of G, where 1G is the unity character for G. It’s well-known that the
degree χi(1) of any irreducible character is a divisor of |G|. For any i ∈ {1, · · · , k}, let Mi

denote the corresponding simple CG-module affording the character χi and Ti denote the
corresponding representation, where C is the complex number field. Here a character of G

is always afforded by a CG-module.

Definition 2 We call R(G) = {
i=k∑
i=1

aiχi, ai ∈ Z} the character ring of the finite group

G, here Z is the ring of rational integers. R(G) is a commutative ring under the addition
and the multiplication of functions.

Lemma 2 For any φ, ψ ∈ R(G), we have the usual inner product(- , -)G on R(G)
defined as follows

(φ, ψ)G =
1
|G|

∑
g∈G

φ(g)ψ(g−1).

Furthermore, (χi, χi)G = 1, while (χi, χj)G = 0 if i is different from j, i.e., Irr(G) is a
standard orthogonal basis of R(G).

3 Main Results and Proofs

To obtain a module construction for the function f defined in Definition 1, we only
need to compute the numbers mi = (f, χi)G, i = 1, · · · , k. Indeed, if we know all the mi(we
will see below that any mi is a positive integer), then the module corresponding to f is
isomorphic to

⊕i=k

i=1 miMi, and then the CG-module
⊕i=k

i=1 miMi affords the character f .
Before computing the numbers mi, i = 1, · · · , k, we will present a key lemma which is

well-known and appeared in [2] first; see also the proof of Theorem 30′ in Chapter 5 in [1].
Theorem 1 For any χ ∈ Irr(G) , by T we denote the corresponding representation

affording the character χ. For a fixed element u ∈ G, the following equation holds:
∑
v∈G

T (v−1uv) = τ(u)I,

here τ(u) =
( |G|

χ(1)

)
χ(u) is a complex number depending on u and I is the χ(1)×χ(1) identity

matrix.
Proof For any g ∈ G, it’s easy to see that

T (g)
(∑

v∈G

T (v−1uv)
)
T (g−1) =

∑
v∈G

T (v−1uv),

which means that
∑
v∈G

T (v−1uv) commutes with any T (g), then by Schur’s lemma, we get

that
∑
v∈G

T (v−1uv) = τ(u)I, where τ(u) is a complex number and I is the χ(1)×χ(1) identity



No. 6 A module construction for a class function on a finite group 697

matrix. Taking the traces of both sides of the above equality, noting that χ is a class function
on G, we obtain τ(u) =

( |G|
χ(1)

)
χ(u).

We are done for the lemma.
Theorem 2 If f is the class function on G defined in Definition 1, then for any

i ∈ {1, · · · , k}, mi = (f, χi)G = |G|
χi(1)

is a positive integer. f is a character of G and the

module affording f is isomorphic to
⊕i=k

i=1
|G|

χi(1)
Mi.

Proof Replace T by Ti in Theorem 1. Multiplying Ti(u−1) on both sides of the equality
in the proof of Theorem 1 , taking sum over u ∈ G and noting that Ti is a representation
for G, we get ∑

u∈G

∑
v∈G

Ti(u−1v−1uv) =
|G|

χi(1)

∑
u∈G

χi(u)Ti(u−1),

and then we take traces of both sides. Putting g = u−1v−1uv = [u, v], we obtain

∑
g∈G

f(g)χi(g) =
|G|

χi(1)

∑
u∈G

χi(u)χi(u−1) =
|G|2
χi(1)

(χi, χi)G =
|G|2
χi(1)

.

What’s more, by the definition of f , it’s evidently that f(g) = f(g−1); indeed if [u, v] = g,
then [v, u] = g−1. Thus through rewriting the left side of the foregoing equality, we get

(f, χi)G = (χi, f)G =
1
|G|

∑
g∈G

f(g)χi(g) =
|G|

χi(1)
.

And the other statements in the theorem follow easily.
From now on, we have proven all of our statements and obtained a module construction

for character f defined in Definition 1. In the following part of this note, we will give
a module construction of f by the regular representation of the center of CG and some
consequences of the main result.

Corollary 1 For any g ∈ G, from what we obtained we see that the number of all the

different (u, v) ∈ G×G, such that [u, v] = g equals
i=k∑
i=1

|G|
χi(1)

χi(g). Consequently, Burnside’s

theorem on commutators follows: An element g ∈ G is a commutator if and only if
i=k∑
i=1

χi(g)
χi(1)

is not equal to 0; see [1, Chapter 3, Theorem 26].
Next, we handle f(g) in another direction. Let Z(CG) denote the center of the group

algebra CG. Let cl(G) = {C1, · · · , Ck} be the set of conjugacy classes of the finite group G

and gj ∈ Cj be a representative of the conjugacy class Cj . Then, the following statements
are well-known.

Lemma 3 The class sums Ĉi =
∑

x∈Ci

x, i = 1, · · · , k, form a basis of Z(CG) and the

functions ωχi
: Z(CG) → C∗, i = 1, · · · , k, cover all the irreducible representations of

Z(CG), where C∗ is the multiplicative group of all non-zero complex numbers, and for any
Cj ∈ cl(G), ωχi

(Ĉj) = |Cj |χi(gj)

χi(1)
.

Now, we can make the function f in Definition 1 more clear. By using the regular
representation of the center of the group algebra, we obtain the following corollary.
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Corollary 2 For any g ∈ G, if we define βg =
∑
x∈G

x−1gx, then f(g) defined in Definition

1 is just the value of the regular character R of Z(CG) at βg.
Proof By the results above, we see that

f(gj) =
i=k∑
i=1

|G|
χi(1)

χi(gj) = |CG(gj)|
i=k∑
i=1

ωχi
(Ĉj),

where CG(gj) represents the centralizer of gj in G. Let R denote the regular character for
Z(CG), then we find that, for any j ∈ {1, · · · , k}, f(gj) = |CG(gj)|R(Ĉj) = R(βg).

Furthermore, if we write ĈjĈi =
l=k∑
l=1

tjilĈl, where tjil are nonnegative integers for all

i, j, l ∈ {1, · · · , k}; see [3, Subsection 3.2..5]. Thus, we get that f(gj) = |CG(gj)|
i=k∑
i=1

tjii.

Corollary 3 If gj is not a commutator, then all tjii = 0.
Proof Because all the tijl, i, j, l ∈ {1, · · · , k} are nonnegative integers and f(gj) = 0,

by the equality above, we know that all tjii = 0.
If we note that tjil = |{(a, b) ∈ Ci ×Cj : ab = gl}|, then we can show Corollary 3 easily

by elementary group theory.
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有限群的一个类函数的模构造
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摘要: 本文研究了有限群上的一个类函数. 通过计算它和不可约特征标的内积, 证明了它是特征标并

且通过复群代数的中心的正则表示给出了它的一个模构造.
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