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Abstract: In this article, we study a class function of a finite group. By computing the
inner product, we prove the class function is a character, and a kind of its module construction is
obtained.
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1 Introduction

In [4], J.G.Thompson considered some interesting generalized characters on a finite

group G. For example, for an element g € G, he defined
Xp(9) = [{h € G : the Sylow p — subgroups of < g,h > are abelian}|.

In [4], J.G.Thompson proved that x, is a generalized character of G.
In this note, we consider a class function f defined on a finite group and prove that it
is a character; by the regular representation of the center of the complex group algebra, we

give a kind of module construction of the class function.

2 Definitions and Basic Results

Definition 1 Let G be a finite group, and the finite group G x G be the direct product
of G and G. We define a function f on G by

flg) =Hu,v) € GxG:g=[uv] =u v uw},

here g is any element of the finite group G and for a set S, |S| denotes the cardinality of S.
Lemma1l fisa class function on G . An element g which is equal to some [u, v],u,v € G

is called a commutator. If g € G is not a commutator, then f(g) = 0.
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Proof The statements are obvious by the definition of f.

In our main theorem of this note, we prove that even f is a character of G.

Now, we fix some notations for this note. Throughout this note, G always denotes a
finite group. By Irr(G) = {x1 = 1g, - , Xx }, we denote the set of all nonequivalent complex
irreducible characters of GG, where 15 is the unity character for G. It’s well-known that the
degree x;(1) of any irreducible character is a divisor of |G|. For any i € {1,--- ,k}, let M,
denote the corresponding simple CG-module affording the character x; and 7; denote the
corresponding representation, where C is the complex number field. Here a character of G

is always afforded by a CG-module.
i=k
Definition 2 We call R(G) = {>_ a;X;,a; € Z} the character ring of the finite group

=1
G, here Z is the ring of rational integers. R(G) is a commutative ring under the addition
and the multiplication of functions.
Lemma 2 For any ¢,¢¥ € R(G), we have the usual inner product(- , -)g on R(G)

defined as follows

(6,0)c = |é| S 6(9)lg ).

geG
Furthermore, (xi,x:)e¢ = 1, while (x;,x;)¢ = 0 if ¢ is different from j, ie., Irr(G) is a
standard orthogonal basis of R(G).

3 Main Results and Proofs

To obtain a module construction for the function f defined in Definition 1, we only
need to compute the numbers m; = (f, xi)g,i = 1,--- , k. Indeed, if we know all the m;(we
will see below that any m; is a positive integer), then the module corresponding to f is
isomorphic to @Zj m;M;, and then the CG-module @z’f m;M; affords the character f.

Before computing the numbers m;, i = 1,--- , k, we will present a key lemma which is
well-known and appeared in [2] first; see also the proof of Theorem 30’ in Chapter 5 in [1].

Theorem 1 For any y € Irr(G) , by T we denote the corresponding representation
affording the character x. For a fixed element u € G, the following equation holds:

ZT(U_luv) =T7(u)l,

veG

here 7(u) = (—)X(u) is a complex number depending on u and 7 is the x (1) x x(1) identity
matrix.

Proof For any g € G, it’s easy to see that

T(o)( YT un))T(g™) = Y Tlv~ wv),

veG veEG

which means that > T'(v™'uv) commutes with any T'(g), then by Schur’s lemma, we get
veG
that > T(v"'uv) = 7(u)l, where 7(u) is a complex number and I is the x(1) x x(1) identity
veG
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matrix. Taking the traces of both sides of the above equality, noting that y is a class function
on GG, we obtain 7(u) = ( ‘ﬁl)) (u).
We are done for the lemma.

Theorem 2 If f is the class function on G defined in Definition 1, then for any

i €{L,-kt, mi = (fixi)e = X‘ill) is a positive integer. f is a character of G and the
module affording f is isomorphic to @Z lf X‘Cﬂ M;.

Proof Replace T by T; in Theorem 1. Multiplying T;(u 1) on both sides of the equality

in the proof of Theorem 1 , taking sum over v € G and noting that T; is a representation

ZZTu v ) = )!C(;J)ZXi(u)Ti(ul),

ueGveG

for G, we get

and then we take traces of both sides. Putting g = u~'v~'uv = [u,v], we obtain

_ 1O e = 1CF
2 Flomale) = <y D xilwpalw™) = T o xide = 5 -

geG ueG

What’s more, by the definition of f, it’s evidently that f(g) = f(¢g~!); indeed if [u,v] = g,

-1

then [v,u] = g~—'. Thus through rewriting the left side of the foregoing equality, we get

_ Gl
(fxide = (e e = 1 g;f e
And the other statements in the theorem follow easily.

From now on, we have proven all of our statements and obtained a module construction
for character f defined in Definition 1. In the following part of this note, we will give
a module construction of f by the regular representation of the center of CG and some
consequences of the main result.

Corollary 1 For any g € G, from what we obtained we see that the number of all the

i=k
different (u,v) € G x G, such that [u,v] = g equals Z ‘C(;l)XZ( ). Consequently, Burnside’s

theorem on commutators follows: An element g € G is a commutator if and only 1f Xi(g

is not equal to 0; see [1, Chapter 3, Theorem 26].

Next, we handle f(g) in another direction. Let Z(CG) denote the center of the group
algebra CG. Let cl(G) = {C4,---,C)} be the set of conjugacy classes of the finite group G
and g; € C; be a representative of the conjugacy class C;. Then, the following statements
are well-known.

Lemma 3 The class sums C; = > x,i=1,---,k, form a basis of Z(CG) and the
zeC;
functions w,, : Z(CG) — C*, i = 1,--- ,k, cover all the irreducible representations of
Z(CG), where C* is the multiplicative group of all non-zero complex numbers, and for any
~ Cilxi(g;
Cj € cl(G), wy, (C;) = 19kxilo),
Now, we can make the function f in Definition 1 more clear. By using the regular

representation of the center of the group algebra, we obtain the following corollary.
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Corollary 2 For any g € G, if we define 3, = Y x7'gz, then f(g) defined in Definition
zeG
1 is just the value of the regular character R of Z(CG) at (3.

Proof By the results above, we see that

i=k G i=k R
o) =35 ipetan = o0 X @)

where C(g;) represents the centralizer of g; in G. Let R denote the regular character for
Z(CG), then we find that, for any j € {1,--- ,k}, f(g;) = |Ca(g;)|R(C;) = R(3,).

1=k
Furthermore, if we write C;C; = ) t;,;C, where t;; are nonnegative integers for all
=1

i,j,0 € {1,--- , k}; see [3, Subsection 3.2..5]. Thus, we get that f(g;) = |Cg(gj)|§:ktj“.

Corollary 3 If g; is not a commutator, then all ¢;;; = 0. =

Proof Because all the t;;,4,j5,l € {1,--- ,k} are nonnegative integers and f(g;) = 0,
by the equality above, we know that all ¢;;; = 0.

If we note that t,; = [{(a,b) € C; x C; : ab = g;}|, then we can show Corollary 3 easily
by elementary group theory.
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